Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Quiz (Sections 5.1-5.4) - Page 230: 3

Answer

$$\sin\Big(-\frac{7\pi}{12}\Big)=-\frac{\sqrt2+\sqrt6}{4}$$

Work Step by Step

$$\sin\Big(-\frac{7\pi}{12}\Big)$$ From Negative-Angle Identities: $\sin(-\theta)=-\sin\theta$. $$\sin\Big(-\frac{7\pi}{12}\Big)=-\sin\frac{7\pi}{12}$$ Next we rewrite $7\pi$ as the sum of $3\pi$ and $4\pi$. $$\sin\Big(-\frac{7\pi}{12}\Big)=-\sin\frac{3\pi+4\pi}{12}=-\sin\Big(\frac{3\pi}{12}+\frac{4\pi}{12}\Big)=-\sin\Big(\frac{\pi}{4}+\frac{\pi}{3}\Big)$$ Then we apply the identity for sum of sines: $$\sin(A+B)=\sin A\cos B+\cos A\sin B$$ with $A=\frac{\pi}{4}$ and $B=\frac{\pi}{3}$ $$\sin\Big(-\frac{7\pi}{12}\Big)=-\Big(\sin\frac{\pi}{4}\cos\frac{\pi}{3}+\cos\frac{\pi}{4}\sin\frac{\pi}{3}\Big)$$ $$\sin\Big(-\frac{7\pi}{12}\Big)=-\Big(\frac{\sqrt2}{2}\frac{1}{2}+\frac{\sqrt2}{2}\frac{\sqrt3}{2}\Big)$$ $$\sin\Big(-\frac{7\pi}{12}\Big)=-\Big(\frac{\sqrt2}{4}+\frac{\sqrt6}{4}\Big)$$ $$\sin\Big(-\frac{7\pi}{12}\Big)=-\frac{\sqrt2+\sqrt6}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.