Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Acute Angles and Right Triangles - Section 2.5 Further Applications of Right Triangles - 2.5 Exercises - Page 88: 35

Answer

433 ft

Work Step by Step

In triangle ABC, $\tan 49.2^{\circ}=\frac{h}{x}$ or $h=x\tan49.2^{\circ}$ In triangle BCD, $\tan29.5^{\circ}=\frac{h}{x+392}$ or $h=(x+392)\tan 29.5^{\circ}$ Equating both expressions for $h$, we get $x\tan49.2^{\circ}=(x+392)\tan29.5^{\circ}$ Using distributive property, we have $x\tan49.2^{\circ}=x\tan29.5^{\circ}+392\tan29.5^{\circ}$ $\implies x(\tan 49.2^{\circ}-\tan29.5^{\circ})=392\tan29.5^{\circ}$ Or $x=\frac{392\tan29.5^{\circ}}{\tan49.2^{\circ}-\tan29.5^{\circ}}$ We saw above that $h=x\tan49.2^{\circ}$ Substituting for $x$, we get $h=(\frac{392\tan29.5^{\circ}}{\tan49.2^{\circ}-\tan29.5^{\circ}})\tan49.2^{\circ}$ $=433\,ft$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.