Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Acute Angles and Right Triangles - Section 2.3 Finding Trigonometric Function Values Using a Calculator - 2.3 Exercises - Page 67: 67

Answer

$51^{\circ}; 231^{\circ}$

Work Step by Step

Using degree mode and inverse tangent function, we get $\theta=\tan^{-1}1.2348971=51^{\circ}$ Another possible value of $\theta$ can be found by using the identity $\tan(180^{\circ}+x)=\tan x$ $\implies \tan 51^{\circ}=\tan(180+51)^{\circ}=\tan 231^{\circ}$ $\implies\tan^{-1}1.2348971=51^{\circ}$ or $\tan^{-1}1.2348971=231^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.