Answer
$51^{\circ}; 231^{\circ}$
Work Step by Step
Using degree mode and inverse tangent function, we get
$\theta=\tan^{-1}1.2348971=51^{\circ}$
Another possible value of $\theta$ can be found by using the identity $\tan(180^{\circ}+x)=\tan x$
$\implies \tan 51^{\circ}=\tan(180+51)^{\circ}=\tan 231^{\circ}$
$\implies\tan^{-1}1.2348971=51^{\circ}$ or $\tan^{-1}1.2348971=231^{\circ}$