Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 1 - Trigonometric Functions - Section 1.4 Using the Definitions of the Trigonometric Functions - 1.4 Exercises - Page 38: 80

Answer

$\sin\theta=\frac{y}{r}=\frac{-\sqrt {59}}{8}$ $\cos\theta=\frac{x}{r}=\frac{\sqrt 5}{8}$ $\tan\theta=\frac{y}{x}=\frac{-\sqrt {59} }{\sqrt 5}=\frac{-\sqrt {295}}{5}$ $\cot\theta=\frac{x}{y}=\frac{\sqrt 5}{-\sqrt {59}}=\frac{-\sqrt {295}}{59}$ $\sec\theta=\frac{r}{x}=\frac{8}{\sqrt 5}=\frac{8\sqrt 5}{5}$ $\csc\theta=\frac{r}{y}=\frac{8}{-\sqrt {59}}=\frac{-8\sqrt {59}}{59}$

Work Step by Step

1. IV quadrant, x is positive and y is negative $x=\sqrt 5$ and $r=8$ 2. Calculate y using the distance formula $8=\sqrt {(y)^{2}+(\sqrt 5)^{2}}$ $64=5+y^{2}$ $y=-\sqrt {59}$ 3. Insert the values to find the trig functions $\sin\theta=\frac{y}{r}=\frac{-\sqrt {59}}{8}$ $\cos\theta=\frac{x}{r}=\frac{\sqrt 5}{8}$ $\tan\theta=\frac{y}{x}=\frac{-\sqrt {59} }{\sqrt 5}=\frac{-\sqrt {295}}{5}$ $\cot\theta=\frac{x}{y}=\frac{\sqrt 5}{-\sqrt {59}}=\frac{-\sqrt {295}}{59}$ $\sec\theta=\frac{r}{x}=\frac{8}{\sqrt 5}=\frac{8\sqrt 5}{5}$ $\csc\theta=\frac{r}{y}=\frac{8}{-\sqrt {59}}=\frac{-8\sqrt {59}}{59}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.