Answer
$-0.75$
Work Step by Step
$\sin^{2}\theta+\cos^{2}\theta=1$
$\implies (0.6)^{2}+\cos^{2}\theta=1$
$\implies \cos^{2}\theta=1-(0.6)^{2}=0.64$
Now, $\tan^{2}\theta=\sec^{2}\theta-1=\frac{1}{\cos^{2}\theta}-1$
$=\frac{1}{0.64}-1=0.5625$
$\tan\theta=\pm \sqrt {0.5625}=\pm 0.75$
$\tan \theta$ is negative in the second quadrant.
Therefore, $\tan\theta=-0.75$