Answer
P(A∩B) = 0
P(B∩C) = 0.2
P(AUC) = P(1) + P(2) + P(3) + P(5) + P(6)
= 1 - P(4)
= 1 - 0.1
= 0.9
P(AUBUC) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
= 1
P(B^{c}) = P(1) + P(3) + P(5) + P(6)
= 0.3 + 0.1 + 0.1 + 0.2
= 0.7
P(A^{c} ∩ B) = P(2) + P(4)
= 0.2 + 0.1 = 0.3
P(B|C) = P(B∩C) / P(C)
= 0.2 / P(2) + P(5) + P(6)
= 0.2 / 0.5 = 0.4
P(B|A) = P(A∩B) / P(A)
= 0
Work Step by Step
As given in answer