Statistics (12th Edition)

Published by Pearson
ISBN 10: 0321755936
ISBN 13: 978-0-32175-593-3

Chapter 2 - Methods for Describing Sets of Data - Exercises 2.71 - 2.89 - Learning the Mechanics - Page 64: 2.82d

Answer

Sample variance = $s^{2}=0.0587 \text{ ounces}^2$ Sample standard deviation = $s =0.24\text{ ounces}$

Work Step by Step

Recall the shortcut formula for calculating the variance ($s^{2}$)$:$ $$s^{2}=\frac{\sum x_{i}^{2}-\frac{(\sum x_{i})^{2}}{n}}{n-1}$$ Let's create a table in which we compute $\displaystyle \sum x_{i}$ and $\displaystyle \sum x_{i}^{2}.$ $$ \begin{array}{lll} & x & x^{2}\\ \hline & 0.2 & 0.04\\ & 0.2 & 0.04\\ & 0.2 & 0.04\\ & 0.4 & 0.16\\ & 0.2 & 0.04\\ & 0.8 & 0.64\\ \hline\rm Sum & 2 & 0.96 \end{array}$$ Plug in the given values (there are $n=6$ data items). $$\begin{align*} s^{2}&= \displaystyle \frac{0.96-\frac{(2)^{2}}{6}}{6-1} & & \\ & =0.0587 \text{ ounces}^2 \\\\ s&= \sqrt{11.4} =0.24\text{ ounces} \end{align*} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.