Statistics (12th Edition)

Published by Pearson
ISBN 10: 0321755936
ISBN 13: 978-0-32175-593-3

Chapter 2 - Methods for Describing Sets of Data - Exercises 2.71 - 2.89 - Learning the Mechanics - Page 64: 2.77b

Answer

Range = $99$ Sample variance = $s^{2}=1949.25$ Sample standard deviation = $s =44.15$

Work Step by Step

Recall the shortcut formula for calculating the variance ($s^{2}$)$:$ $$s^{2}=\frac{\sum x_{i}^{2}-\frac{(\sum x_{i})^{2}}{n}}{n-1}$$ Create a table in which we compute $\displaystyle \sum x_{i}$ and $\displaystyle \sum x_{i}^{2}$: $$ \begin{array}{rrr} & x & x^{2}\\ \hline & 100 & 10000\\ & 4 & 16\\ & 7 & 49\\ & 96 & 9216\\ & 80 & 6400\\ & 3 & 9\\ & 1 & 1\\ & 10 & 100\\ & 2 & 4\\ \hline\rm Sum & 303 & 25795 \end{array}$$ Plug in the given values (there are $n=9$ data items): $$\begin{align*} s^{2}&= \displaystyle \frac{25795-\frac{(303)^{2}}{9}}{9-1} & & \\ & =1949.25 \\\\ s&= \sqrt{1949.25} =44.15 \end{align*}$$ The range is the difference between the largest and smallest data item: $100-1=99$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.