Answer
Range = $99$
Sample variance = $s^{2}=1949.25$
Sample standard deviation = $s =44.15$
Work Step by Step
Recall the shortcut formula for calculating the variance ($s^{2}$)$:$
$$s^{2}=\frac{\sum x_{i}^{2}-\frac{(\sum x_{i})^{2}}{n}}{n-1}$$
Create a table in which we compute $\displaystyle \sum x_{i}$ and $\displaystyle \sum x_{i}^{2}$:
$$ \begin{array}{rrr}
& x & x^{2}\\
\hline & 100 & 10000\\
& 4 & 16\\
& 7 & 49\\
& 96 & 9216\\
& 80 & 6400\\
& 3 & 9\\
& 1 & 1\\
& 10 & 100\\
& 2 & 4\\
\hline\rm Sum & 303 & 25795 \end{array}$$
Plug in the given values (there are $n=9$ data items):
$$\begin{align*}
s^{2}&= \displaystyle \frac{25795-\frac{(303)^{2}}{9}}{9-1} & & \\
& =1949.25 \\\\
s&= \sqrt{1949.25} =44.15 \end{align*}$$
The range is the difference between the largest and smallest data item:
$100-1=99$