Essentials of Statistics (5th Edition)

Published by Pearson
ISBN 10: 0-32192-459-2
ISBN 13: 978-0-32192-459-9

Chapter 8 - Hypothesis Testing - Review - Review Exercises - Page 428: 3

Answer

There is sufficient evidence to support that more than 75% of the people do not open emails and links from unfamiliar senders.

Work Step by Step

$H_{0}:p=75$%=0.75. $H_{a}:p>0.75.$ $\hat{p}$ is the number of objects with a specified value divided by the sample size. Hence $\hat{p}=0.92.$ The test statistic is:$z=\frac{\hat{p}-p}{\sqrt{p(1-p)/n}}=\frac{0.92-0.75}{\sqrt{0.75(1-0.75)/737}}=10.66.$ The P is the probability of the z-score being more than 10.66 which is 1 minus the probability of the z-score being less than 10.66, hence:P=1-0.9999=0.0001. If the P-value is less than $\alpha$, which is the significance level, then this means the rejection of the null hypothesis. Hence:P=0.0001 is less than $\alpha=0.01$, hence we reject the null hypothesis. Hence we can say that there is sufficient evidence to support that more than 75% of the people do not open emails and links from unfamiliar senders.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.