Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.4 Logarithmic Functions - 4.4 Assess Your Understanding - Page 322: 104

Answer

$\left\{\dfrac{-1+\sqrt{85}}{2}, \dfrac{-1-\sqrt{85}}{2}\right\}$

Work Step by Step

$\because y=\log_a x \text{ is equivalent to } x= a^y$ $\therefore 2 = \log_5 {x^2+x+4} \text{ is equivalent to } x^2+x+4=5^2$ Solve teh equation above to obtain: \begin{align*} x^2+x+4&=5^2\\\\ x^2+x+4&=25\\\\ x^2+4+4-25&=0\\\\ x^2+x-21&=0 \end{align*} Comparing $x^2+x-21=0$ to $ax^2+bx+c=0$ to find $a,b \text{ and } c$ $$\therefore a =1, b=1, c =-21$$ Evaluating the discriminant $b^2-4ac$ gives: $$b^2-4ac = (1)^2-4 \times 1\times -21 = 85$$ Solve using the quadratic formula to obtain: $$x= \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$$ $$x= \dfrac{-1\pm \sqrt{85}}{2\times 1}$$ $$x=\dfrac{-1\pm \sqrt{85}}{2}$$ $\therefore x =\dfrac{-1+\sqrt{85}}{2}\hspace{20pt} \text{or} \hspace{20pt} x=\dfrac{-1-\sqrt{85}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.