Answer
$\dfrac{1-\ln{13}}{2}$
Work Step by Step
$\because e^y=x \text{ is equivalent to } y=\ln{x}$
$\therefore e^{-2x+1} = 13 \text{ is equivalent to } -2x+1=\ln{13}$
Solve the equation above to obtain:
\begin{align*}-2x+1&=\ln{13}\\\\
-2x&=\ln{13}-1\\\\
\frac{-2x}{-2}&=\frac{\ln{13}-1}{-2}\\\\
x&=-\frac{\ln{13}}{2}+\frac{1}{2}\\\\
x&=\frac{1}{2}-\frac{\ln{13}}{2}\\\\
x&=\dfrac{1-\ln{13}}{2}\end{align*}