Answer
$64, 4, \dfrac{1}{9}$
Work Step by Step
We expand the exponent:
$4^3=4\cdot 4\cdot 4=64$
Apply the rule $a^{p/q}=(\sqrt[q]{a})^p$ to obtain:
$8^{(2/3)}=(\sqrt[3] 8)^2=(\sqrt[3]{2^3})^2=2^2=4$
Apply the rule $a^{-p} = \dfrac{1}{a^p}, p \gt 0$ to obtain:
$3^{-2}=\dfrac{1}{3^2}=\dfrac{1}{9}$