Answer
$b=4$
Work Step by Step
Recall the logarithmic property:
When $a^x=y$, then $\log_a y =x$ and vice-versa.
Applying this rule, we obtain:
$\log_b \ 16=2 \\ b^2=16$
Simplify the equation to obtain:
$b^{2}=16 \\ b^2 =4^2$
Apply the rule: $a^m=a^n \longrightarrow m=n$ if $a\ne1,a\ne-1$
So, $b=4$