Answer
$2,3\pm 2i$
$f(x)=(x-2)(x-3+2i)(x-3-2i)$
Work Step by Step
Step 1. Use synthetic division (as shown in the figure) to find zero(s) of $f(x)=x^3-8x^2+25x-26$ as $x=2$.
Step 2. Use the quotient to find other zeros $x^2-6x+13=0 \Longrightarrow x=\frac{6\pm\sqrt {36-4(13)}}{2}=3\pm 2i$
Step 3. We have $f(x)=(x-2)(x-3+2i)(x-3-2i)$