Answer
(a) $x=-4$ (multiplicity 1) and $x=-3$ (multiplicity 3) .
(b) crosses the x-axis at $x=-4,-3$.
(c) $3$.
(d) $y=4x^4$.
Work Step by Step
(a) Given $f(x)=4(x+4)(x+3)^3$, we can find zeros $x=-4$ (multiplicity 1) and $x=-3$ (multiplicity 3) .
(b) The graph crosses the x-axis at $x=-4,-3$.
(c) The maximum number of turning points on the graph is $n-1=4-1=3$.
(d) The end behavior is similar to those of $y=4x^4$.