Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 2 - Linear and Quadratic Functions - Section 2.3 Quadratic Functions and Their Zeros - 2.3 Assess Your Understanding - Page 147: 97

Answer

$\frac{5}{3}$, $(\frac{5}{3},-\frac{45}{88})$.

Work Step by Step

Step 1. Let $f(x)=g(x), x\ne -2,-1$ to get $\frac{3x(x+1)-5(x+2)}{(x+2)(x+1)}=\frac{-5}{(x+2)(x+1)} \longrightarrow 3x^2+3x-5x-10=-5 \longrightarrow 3x^2-2x-5=0 \longrightarrow (3x-5)(x+1)=0 \longrightarrow x=\frac{5}{3}$, Step 2. For $x=\frac{5}{3}$, we have $g(\frac{5}{3})=\frac{-5}{(\frac{5}{3}+2)(\frac{5}{3}+1)}=-\frac{45}{88}$ or $(\frac{5}{3},-\frac{45}{88})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.