Answer
$-\frac{5}{2},\frac{1}{5}$,
$(-\frac{5}{2},\frac{25}{2})$,
$(\frac{1}{5},\frac{22}{5})$.
Work Step by Step
Step 1. Let $f(x)=g(x)$ to get $10x^2+20x=-3x+5 \longrightarrow 10x^2+23x-5=0 \longrightarrow (2x+5)(5x-1)=0 \longrightarrow x=-\frac{5}{2},\frac{1}{5}$,
Step 2. For $x=-\frac{5}{2}$, we have $g(-\frac{5}{2})=-3(-\frac{5}{2})+5=\frac{25}{2}$ or intersect $(-\frac{5}{2},\frac{25}{2})$,
Step 3. For $x=\frac{1}{5}$, we have $g(\frac{1}{5})=-3(\frac{1}{5})+5=\frac{22}{5}$ or intersect $(\frac{1}{5},\frac{22}{5})$.