Answer
$462$
Work Step by Step
Recall the combination formula:
$C(n,k)=\frac{n!}{(n-k)!k!}$
We choose $5$ out of $11$ or $C(11,5)$. Thus:
$C(11,5)=\require{cancel} \frac{11!}{(11-5)!5!}=\frac{11\cdot10\cdot9\cdot8\cdot7\cdot6!}{6!5!}=\frac{11\cdot10\cdot9\cdot8\cdot7\cdot\cancel{6!}}{\cancel{6!}5!}=\frac{11\cdot10\cdot9\cdot8\cdot7}{5!}=462$