Answer
$151,200$
Work Step by Step
Recall:
$P(n, k)=\dfrac{n!}{(n-k)!}$ .
Hence,
\begin{align*}
\require{cancel}
P(10, 6)&=\dfrac{10!}{(10-6)!}\\
\\
&=\dfrac{10!}{4!}\\
\\
&=\dfrac{10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}{4\cdot3\cdot2\cdot1}\\\
\\
&=\dfrac{10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot\cancel{4\cdot3\cdot2\cdot1}}{\cancel{4\cdot3\cdot2\cdot1}}\\\
\\
&=10\cdot9\cdot8\cdot7\cdot6\cdot5\\&
\\
&=151200
\end{align*}