Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 6 - The Circular Functions and Their Graphs - Chapter 6 Test Prep - Review Exercises - Page 645: 51

Answer

$$s = \frac{{7\pi }}{6}$$

Work Step by Step

$$\eqalign{ & \left[ {\pi ,\frac{{3\pi }}{2}} \right];{\text{ }}\sec s = - \frac{{2\sqrt 3 }}{3} \cr & {\text{Using the secant definition}} \cr & {\text{sec }}s = \frac{1}{{\cos s}} = - \frac{{2\sqrt 3 }}{3} \cr & \cos s = - \frac{{\sqrt 3 }}{2} \cr & {\text{From the unit circle we can see that in the interval }}\left[ {\pi ,\frac{{3\pi }}{2}} \right],{\text{ }} \cr & {\text{the arc length }}s = \frac{{7\pi }}{6}{\text{ is associate with the point }}\left( { - \frac{{\sqrt 3 }}{2}, - \frac{1}{2}} \right). \cr & {\text{The first coordinate is }} \cr & {\text{cos }}s = \cos \frac{{7\pi }}{6} = - \frac{{\sqrt 3 }}{2} \cr & {\text{sec }}s = \frac{1}{{\cos \left( {7\pi /6} \right)}} = - \frac{{2\sqrt 3 }}{3} \cr & {\text{then }}s = \frac{{7\pi }}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.