Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 6 - The Circular Functions and Their Graphs - Chapter 6 Test Prep - Review Exercises - Page 645: 50

Answer

$$s = \frac{{2\pi }}{3}$$

Work Step by Step

$$\eqalign{ & \left[ {\frac{\pi }{2},\pi } \right];{\text{ tan }}s = - \sqrt 3 \cr & {\text{Using the tangent definition}} \cr & {\text{tan }}s = \frac{{\sin s}}{{\cos s}} = - \sqrt 3 \cr & {\text{From the unit circle we can see that in the interval }}\left[ {\frac{\pi }{2},\pi } \right],{\text{ }} \cr & {\text{the arc length }}s = \frac{{2\pi }}{3}{\text{ is associate with the point }}\left( {\frac{{\sqrt 3 }}{2}, - \frac{1}{2}} \right). \cr & {\text{The first coordinate is }} \cr & {\text{cos }}s = \cos \frac{{2\pi }}{3} = - \frac{1}{2} \cr & {\text{The second coordinate is }} \cr & \sin s = \sin \frac{{2\pi }}{3} = \frac{{\sqrt 3 }}{2} \cr & \cr & {\text{tan }}s = \frac{{\sin \left( {2\pi /3} \right)}}{{\cos \left( {2\pi /3} \right)}} = \frac{{\frac{{\sqrt 3 }}{2}}}{{ - \frac{1}{2}}} = - \sqrt 3 \cr & {\text{then }}s = \frac{{2\pi }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.