Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 6 - The Circular Functions and Their Graphs - Chapter 6 Test Prep - Review Exercises - Page 644: 34

Answer

$$ - \sqrt 3 $$

Work Step by Step

$$\eqalign{ & \tan \left( { - \frac{{7\pi }}{3}} \right) \cr & {\text{Use tan}}\left( { - \theta } \right) = - \tan \theta \cr & = - \tan \left( {\frac{{7\pi }}{3}} \right) \cr & {\text{Use the identity }}\tan \theta = \frac{{\sin \theta }}{{\cos \theta }} \cr & - \tan \left( {\frac{{7\pi }}{3}} \right) = \frac{{ - \sin \left( {7\pi /3} \right)}}{{\cos \left( {7\pi /3} \right)}} \cr & {\text{Write }}\frac{{7\pi }}{3}{\text{ as }}2\pi + \frac{\pi }{3} \cr & - \tan \left( {\frac{{7\pi }}{3}} \right) = \frac{{ - \sin \left( {2\pi + \pi /3} \right)}}{{\cos \left( {2\pi + \pi /3} \right)}} \cr & {\text{Then}} \cr & - \tan \left( {\frac{{7\pi }}{3}} \right) = \frac{{ - \sin \left( {\pi /3} \right)}}{{\cos \left( {\pi /3} \right)}} \cr & \cr & {\text{From the unit circle we known that }} \cr & \sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}{\text{ and cos}}\frac{\pi }{3} = \frac{1}{2} \cr & - \tan \left( {\frac{{7\pi }}{3}} \right) = \frac{{ - \left( {\sqrt 3 /2} \right)}}{{1/2}} \cr & - \tan \left( {\frac{{7\pi }}{3}} \right) = - \sqrt 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.