Answer
$\color{blue}{\tan{(-\frac{17\pi}{3})}=\sqrt3}$
Work Step by Step
Note that $-\dfrac{17\pi}{3}$ is coterminal with:
$-\dfrac{17\pi}{3} + 6\pi=-\dfrac{17\pi}{3} + \dfrac{18\pi}{3}=\dfrac{\pi}{3}$
Figure 13 on page 579 of this book shows that the unit circle point $(\frac{1}{2}, \frac{\sqrt3}{2})$ corresponds to the real number $\dfrac{-4\pi}{3}$ or $\dfrac{2\pi}{3}$.
RECALL:
(i) $\cos{s} = x$
(ii) $\sin{s} = y$
(iii) $\tan{s}=\dfrac{y}{x}$
(iv) $\sec{s} =\dfrac{1}{x}$
(v) $\csc{s} = \dfrac{1}{y}$
(vi) $\cot{s} = \dfrac{x}{y}$
Use the coordinates of the unit circle point above and the formula in (iii) above to obtain:
$\color{blue}{\tan{(-\frac{17\pi}{3})}=\tan{\frac{\pi}{3}}=\dfrac{\frac{\sqrt3}{2}}{\frac{1}{2}}=\dfrac{\sqrt3}{2} \cdot \dfrac{2}{1}=\sqrt3}$