Answer
See graph and explanations.
Work Step by Step
Step 1. Rewrite the equation as
$2.5y^2+(6x+4)y+(7x^2-14x+9)$
and let
$a=2.5, b=6x+4, c=7x^2-14x+9$
Step 2. Use the quadratic formula
$y=\frac{-b\pm\sqrt {b^2-4ac}}{2a}$
to get
$y=\frac{-6x-4\pm\sqrt {(6x+4)^2-4(2.5)(7x^2-14x+9)}}{5}=\frac{-6x-4\pm\sqrt {(6x+4)^2-10(7x^2-14x+9)}}{5}$
Step 3. We can graph the equations
$y_1=\frac{-6x-4+\sqrt {(6x+4)^2-10(7x^2-14x+9)}}{5}$
and
$y_2=\frac{-6x-4-\sqrt {(6x+4)^2-10(7x^2-14x+9)}}{5}$
as shown in the figure.