Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 947: 74

Answer

See the explanation below.

Work Step by Step

The solution of the given system can be obtained by using the Cramer’s rule, $\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} \\ {{a}_{2}} & {{b}_{2}} \\ \end{matrix} \right|=\left| \begin{matrix} {{c}_{1}} \\ {{c}_{2}} \\ \end{matrix} \right|$ $\begin{align} & x=\frac{{{D}_{x}}}{D}\text{ and }y=\frac{{{D}_{y}}}{D}\text{ } \\ & D=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} \\ {{a}_{2}} & {{b}_{2}} \\ \end{matrix} \right|={{a}_{1}}\cdot {{b}_{2}}-{{b}_{1}}\cdot {{a}_{2}} \\ & {{D}_{x}}=\left| \begin{matrix} {{c}_{1}} & {{b}_{1}} \\ {{c}_{2}} & {{b}_{2}} \\ \end{matrix} \right|={{c}_{1}}\cdot {{b}_{2}}-{{b}_{1}}\cdot {{c}_{2}} \\ & {{D}_{y}}=\left| \begin{matrix} {{a}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{c}_{2}} \\ \end{matrix} \right|={{a}_{1}}\cdot {{c}_{2}}-{{c}_{1}}\cdot {{a}_{2}} \end{align}$ So, $\begin{align} & x=\frac{{{c}_{1}}\cdot {{b}_{2}}-{{b}_{1}}\cdot {{c}_{2}}}{{{a}_{1}}\cdot {{b}_{2}}-{{b}_{1}}\cdot {{a}_{2}}}\text{ (i)} \\ & y=\frac{{{a}_{1}}\cdot {{c}_{2}}-{{c}_{1}}\cdot {{a}_{2}}}{{{a}_{1}}\cdot {{b}_{2}}-{{b}_{1}}\cdot {{a}_{2}}}\text{ (ii)} \\ \end{align}$ Now consider the first equation as a sum of two equation, i.e. ${{a}_{1}}x+{{b}_{1}}y={{c}_{1}}$ As a sum of two equations, $\begin{align} & {{a}_{3}}x+{{b}_{3}}y={{c}_{3}} \\ & {{a}_{4}}x+{{b}_{4}}y={{c}_{4}} \\ \end{align}$ Where, $\begin{align} & {{a}_{1}}={{a}_{3}}+{{a}_{4}}\text{ }(iii) \\ & {{b}_{1}}={{b}_{3}}+{{b}_{4}}\text{ }(iv) \\ & {{c}_{1}}={{c}_{3}}+{{c}_{4}}\text{ }(v) \\ \end{align}$ So, equation 1 can be written as, $({{a}_{3}}+{{a}_{4}})x+({{b}_{3}}+{{b}_{4}})y={{c}_{3}}+{{c}_{4}}$ Now the solution of two resulting equations is, $\left| \begin{matrix} {{a}_{3}}+{{a}_{4}} & {{b}_{3}}+{{b}_{4}} \\ {{a}_{2}} & {{b}_{2}} \\ \end{matrix} \right|=\left| \begin{matrix} {{c}_{3}}+{{c}_{4}} \\ {{c}_{2}} \\ \end{matrix} \right|$ $\begin{align} & x=\frac{{{D}_{x}}}{D}\text{ and }y=\frac{{{D}_{y}}}{D}\text{ } \\ & D=\left| \begin{matrix} {{a}_{3}}+{{a}_{4}} & {{b}_{3}}+{{b}_{4}} \\ {{a}_{2}} & {{b}_{2}} \\ \end{matrix} \right|=({{a}_{3}}+{{a}_{4}})\cdot {{b}_{2}}-({{b}_{3}}+{{b}_{4}})\cdot {{a}_{2}} \\ & {{D}_{x}}=\left| \begin{matrix} {{c}_{3}}\text{+}{{\text{c}}_{4}} & {{b}_{3}}\text{+}{{\text{b}}_{4}} \\ {{c}_{2}} & {{b}_{2}} \\ \end{matrix} \right|=({{c}_{3}}\text{+}{{\text{c}}_{4}})\cdot {{b}_{2}}-({{b}_{3}}\text{+}{{\text{b}}_{4}})\cdot {{c}_{2}} \\ & {{D}_{y}}=\left| \begin{matrix} {{a}_{3}}+{{a}_{4}} & {{c}_{3}}+{{c}_{4}} \\ {{a}_{2}} & {{c}_{2}} \\ \end{matrix} \right|=({{a}_{3}}+{{a}_{4}})\cdot {{c}_{2}}-({{c}_{3}}+{{c}_{4}})\cdot {{a}_{2}} \end{align}$ So, $\begin{align} & x=\frac{({{c}_{3}}\text{+}{{\text{c}}_{4}})\cdot {{b}_{2}}-({{b}_{3}}\text{+}{{\text{b}}_{4}})\cdot {{c}_{2}}}{({{\text{a}}_{3}}\text{+}{{\text{a}}_{4}})\cdot {{b}_{2}}-({{b}_{3}}\text{+}{{\text{b}}_{4}})\cdot {{a}_{2}}}\text{ (vi)} \\ & y=\frac{({{\text{a}}_{3}}\text{+}{{\text{a}}_{4}})\cdot {{c}_{2}}-({{c}_{3}}\text{+}{{\text{c}}_{4}})\cdot {{a}_{2}}}{({{\text{a}}_{3}}\text{+}{{\text{a}}_{4}})\cdot {{b}_{2}}-({{b}_{3}}\text{+}{{\text{b}}_{4}})\cdot {{a}_{2}}}\text{ (vii)} \\ \end{align}$ Clearly, from equations $(i),(ii),(iii),(iv),(v),(vi) and (vii)$, the first equation of the system is replaced by the sum of the two equations; the resulting system has the same solution as the original system. So, if the first equation of the system is replaced by the sum of the two equations, the resulting system has the same solution as the original system.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.