Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.5 - Determinants and Cramer's Rule - Exercise Set - Page 947: 69

Answer

The provided statement does not make any sense.

Work Step by Step

The given statement does not make any sense. Whether it is a 2, 3, or more variable system, to find the variables given in the linear system we need to find the $n+1$ determinants. Here,e $n$ is the order of the determinant or the number of variables in the given linear system. Example: Given a linear system in three variables, $\begin{align} & {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}} \\ & {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}} \\ & {{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}} \\ \end{align}$ Where ${{a}_{1}},{{a}_{2}},{{a}_{3,}}{{b}_{1}}\text{,}{{\text{b}}_{2}}\text{,}{{\text{b}}_{3}}\text{,}{{\text{c}}_{1}}\text{,}{{\text{c}}_{2}}\text{and }{{\text{c}}_{3}}\text{ are coefficients and }{{\text{d}}_{1}},{{d}_{2}}\And {{c}_{3}}\text{ are constants}\text{.}$ Then, $\begin{align} & x=\frac{{{D}_{x}}}{D},y=\frac{{{D}_{y}}}{D},z=\frac{{{D}_{z}}}{D},\text{ where D}\ne \text{0} \\ & \\ \end{align}$ Where, $D=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\text{ }$ These are the coefficients of variables x, y, z. ${{D}_{x}}=\left| \begin{matrix} {{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|$ Replace $x$ -coefficients in $D$ with the constants on the right of the three equations. ${{D}_{y}}=\left| \begin{matrix} {{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\ \end{matrix} \right|$ Replace $y$ -coefficients in $D$ with the constants on the right of the three equations. ${{D}_{z}}=\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\ \end{matrix} \right|$ Replace $z$ -coefficients in $D$ with the constants on the right of the three equations. So, find the $3+1=4$ determinants -- i.e. one more than the number of given variables in the linear system. The provided statement does not make any sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.