Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 920: 90

Answer

The solution to the linear system is $\left( \left\{ 15,-12,-4 \right\} \right)$.

Work Step by Step

The matrix corresponding to the system of equations is given as follows: $\left[ \begin{matrix} -1 & -1 & -1 & 1 \\ 4 & 5 & 0 & 0 \\ 0 & 1 & -3 & 0 \\ \end{matrix} \right]$ Using the elementary row transformation, we will find the echelon form of the matrix. Apply the row operation ${{R}_{1}}\to \left( -1 \right){{R}_{1}}$: $\left[ \begin{matrix} 1 & 1 & 1 & -1 \\ 4 & 5 & 0 & 0 \\ 0 & 1 & -3 & 0 \\ \end{matrix} \right]$ Apply the row operation ${{R}_{2}}\to {{R}_{2}}-4{{R}_{1}}$: $\left[ \begin{matrix} 1 & 1 & 1 & -1 \\ 0 & 1 & -4 & 4 \\ 0 & 1 & -3 & 0 \\ \end{matrix} \right]$ $\begin{align} & {{R}_{1}}\to {{R}_{1}}-{{R}_{2}} \\ & {{R}_{3}}\to {{R}_{3}}-{{R}_{2}} \\ \end{align}$ $\left[ \begin{matrix} 1 & 0 & 5 & -5 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -4 \\ \end{matrix} \right]$ $\begin{align} & {{R}_{1}}\to {{R}_{1}}-5{{R}_{3}} \\ & {{R}_{2}}\to {{R}_{4}}+4{{R}_{3}} \\ \end{align}$ $\left[ \begin{matrix} 1 & 0 & 0 & 15 \\ 0 & 1 & 0 & -12 \\ 0 & 0 & 1 & -4 \\ \end{matrix} \right]$ Thus, the solution set for the system of linear equations is $\left( \left\{ 15,-12,-4 \right\} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.