Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 920: 89

Answer

$\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\ \end{matrix} \right]$ Nothing happens to the element in the first matrix.

Work Step by Step

We show that $AI=A$. Consider the matrix: $\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{12}} & {{a}_{22}} \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]$ Let the provided matrix be denoted by, $\begin{align} & A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{12}} & {{a}_{22}} \\ \end{matrix} \right] \\ & I=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \end{align}$ Now, compute the matrix as $B=A\cdot I$ $\begin{align} & A\cdot I=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} {{a}_{11}}\times 1+{{a}_{12}}\times 0 & {{a}_{11}}\times 0+{{a}_{12}}\times 1 \\ {{a}_{21}}\times 1+{{a}_{22}}\times 0 & {{a}_{21}}\times 0+{{a}_{22}}\times 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\ \end{matrix} \right] \\ & =\left[ A \right] \end{align}$ Thus, the element is the first matrix remains the same.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.