Answer
Yes, the statement makes sense.
Work Step by Step
Consider the system of equations,
$\begin{align}
& x+y+z+w=-1 \\
& -x+4y+z-w=0 \\
& x-2y+z-2w=11 \\
& -x-2y+z+2w=-3
\end{align}$
First write the augmented matrix for the given system of equations:
Augmented matrix is:
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
-1 & 4 & 1 & -1 \\
1 & -2 & 1 & -2 \\
-1 & -2 & 1 & 2 \\
\end{matrix} \right|\begin{matrix}
-1 \\
0 \\
11 \\
-3 \\
\end{matrix} \right]$
Apply Gauss Jordan Elimination Method.
Use row operation to reduce the matrix to row echelon form
${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 5 & 2 & 0 & -1 \\
1 & -2 & 1 & -2 & 11 \\
-1 & -2 & 1 & 2 & -3 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 5 & 2 & 0 & -1 \\
0 & -3 & 0 & -3 & 12 \\
-1 & -2 & 1 & 2 & -3 \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}+{{R}_{1}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 5 & 2 & 0 & -1 \\
0 & -3 & 0 & -3 & 12 \\
0 & -1 & 2 & 3 & -4 \\
\end{matrix} \right]$
${{R}_{2}}\to \frac{1}{5}{{R}_{2}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & -3 & 0 & -3 & 12 \\
0 & -1 & 2 & 3 & -4 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}+3{{R}_{2}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\
0 & -1 & 2 & 3 & -4 \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}+{{R}_{2}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\
0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\
\end{matrix} \right]$
${{R}_{3}}\to \frac{5}{6}{{R}_{3}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\
0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}-\frac{12}{5}{{R}_{3}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\
0 & 0 & 0 & 9 & -27 \\
\end{matrix} \right]$
${{R}_{4}}\to \frac{1}{9}{{R}_{4}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}+\frac{5}{2}{{R}_{4}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 1 & -1 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{4}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 0 & 2 \\
0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
${{R}_{2}}\to {{R}_{2}}-\frac{2}{5}{{R}_{1}}$, gives
$\left[ \begin{matrix}
1 & 1 & 1 & 0 & 2 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$, gives
$\left[ \begin{matrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$, gives
$\left[ \begin{matrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -3 \\
\end{matrix} \right]$
Thus, the solution is:
$x=1,y=-1,z=2,w=-3$
Hence, the provided statement makes sense.