Answer
The required matrices are
$\left[ \begin{matrix}
1 & -3 & 2 & 5 \\
1 & 5 & -5 & 0 \\
3 & 0 & 4 & 7 \\
\end{matrix} \right],\left[ \begin{matrix}
1 & -4 & 2 & 3 \\
1 & -4 & 4 & 0 \\
2 & 0 & 7 & 4 \\
\end{matrix} \right],\left[ \begin{matrix}
1 & -3 & 2 & 0 \\
0 & 10 & -7 & 7 \\
2 & -2 & 1 & 3 \\
\end{matrix} \right]$
Work Step by Step
Consider the matrix of exercise 13:
$\left[ \begin{matrix}
2 & -6 & 4 & 10 \\
1 & 5 & -5 & 0 \\
3 & 0 & 4 & 7 \\
\end{matrix} \right]$
The operation to be applied is ${{R}_{1}}\to \frac{1}{2}{{R}_{1}}$.
Follow the steps given below to solve the provided equations:
Step1: Open the Ti-83 calculator and press the “2ND” button and press “ ${{x}^{-1}}$ ”.
Step2: For augmented matrix select matrix A and go to edit. Enter the order of matrix and entries of the matrix. Then again press “2ND” and “Quit”.
Step3: Press “2ND” and “ ${{x}^{-1}}$ ” then go to “MATH” and select “*row (“.
Step4: Enter $\frac{1}{2}$, “2ND” then press 1, again press 1, then press “Enter”.
The resulting matrix is:
$\left[ \begin{matrix}
1 & -3 & 2 & 5 \\
1 & 5 & -5 & 0 \\
3 & 0 & 4 & 7 \\
\end{matrix} \right]$
Consider the matrix of exercise 14:
$\left[ \begin{matrix}
3 & -12 & 6 & 9 \\
1 & -4 & 4 & 0 \\
2 & 0 & 7 & 4 \\
\end{matrix} \right]$
The operation to be applied is ${{R}_{1}}\to \frac{1}{3}{{R}_{1}}$.
Follow the steps given below to solve the provided equations:
Step 1: Open the Ti-83 calculator and press the “2ND” button and press “ ${{x}^{-1}}$ ”.
Step 2: For augmented matrix select matrix A and go to edit. Enter the order of matrix and entries of the matrix. Then again press “2ND” and “Quit”.
Step 3: Press “2ND” and “ ${{x}^{-1}}$ ” then go to “MATH” and select “*row (“.
Step 4: Enter $\frac{1}{3}$, “2ND” then press 1, then press 1again.
The resulting matrix is:
$\left[ \begin{matrix}
1 & -4 & 2 & 3 \\
1 & -4 & 4 & 0 \\
2 & 0 & 7 & 4 \\
\end{matrix} \right]$
Consider the matrix of exercise 15:
$\left[ \begin{matrix}
1 & -3 & 2 & 0 \\
3 & 1 & -1 & 7 \\
0 & -2 & 1 & 3 \\
\end{matrix} \right]$
The operation to be applied is ${{R}_{2}}\to -3{{R}_{1}}+{{R}_{2}}$.
Follow the steps given below to solve the provided equations:
Step 1: Open the Ti-83 calculator and press the “2ND” button and press “ ${{x}^{-1}}$ ”.
Step 2: For augmented matrix select matrix A and go to edit. Enter the order of matrix and entries of the matrix. Then again press “2ND” and “Quit”.
Step 3: Press “2ND” and “ ${{x}^{-1}}$ ” then go to “MATH” and select “*row+ (“.
Step 4: Enter $-3$, “2ND” then press 1, then again press 1, 2 and press “Enter”.
The resulting matrix is:
$\left[ \begin{matrix}
1 & -3 & 2 & 0 \\
0 & 10 & -7 & 7 \\
2 & -2 & 1 & 3 \\
\end{matrix} \right]$
The resultedmatrix are:
$\left[ \begin{matrix}
1 & -3 & 2 & 5 \\
1 & 5 & -5 & 0 \\
3 & 0 & 4 & 7 \\
\end{matrix} \right],\left[ \begin{matrix}
1 & -4 & 2 & 3 \\
1 & -4 & 4 & 0 \\
2 & 0 & 7 & 4 \\
\end{matrix} \right],\left[ \begin{matrix}
1 & -3 & 2 & 0 \\
0 & 10 & -7 & 7 \\
2 & -2 & 1 & 3 \\
\end{matrix} \right]$