Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 893: 36

Answer

The values of w, x, y, z are $w=2,x=1,y=-1,z=3$.

Work Step by Step

Consider the system of the equations: $\begin{align} & w+x+y+z=5 \\ & w+2x-y-2z=-1 \\ & w-3x-3y-z=-1 \\ & 2w-x+2y-z=-2 \end{align}$ The matrix corresponding to the system of equation is as follows: $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 1 & 2 & -1 & -2 & -1 \\ 1 & -3 & -3 & -1 & -1 \\ 2 & -1 & 2 & -1 & -2 \\ \end{matrix} \right]$ The matrix will be converted into the echelon form by using the elementary row transformation. ${{R}_{2}}\to {{R}_{2}}+\left( -1 \right){{R}_{1}},{{R}_{3}}\to {{R}_{3}}+\left( -1 \right){{R}_{1}},{{R}_{4}}\to {{R}_{4}}+\left( -2 \right){{R}_{1}}$ give, $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & -4 & -4 & -2 & -6 \\ 0 & -3 & 0 & -3 & -12 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+\left( 4 \right){{R}_{2}},{{R}_{4}}\to {{R}_{4}}+\left( 3 \right){{R}_{2}}$ gives, $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & -12 & -14 & -30 \\ 0 & 0 & -6 & -12 & -30 \\ \end{matrix} \right]$ ${{R}_{3}}\to -\frac{1}{12}{{R}_{3}}$ gives, $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & 1 & \frac{7}{6} & \frac{5}{2} \\ 0 & 0 & -6 & -12 & -30 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+\left( 6 \right){{R}_{3}}$ gives, $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & 1 & \frac{7}{6} & \frac{5}{2} \\ 0 & 0 & 0 & -5 & -15 \\ \end{matrix} \right]$ ${{R}_{4}}\to -\frac{1}{5}{{R}_{4}}$ gives, $\left[ \begin{matrix} 1 & 1 & 1 & 1 & 5 \\ 0 & 1 & -2 & -3 & -6 \\ 0 & 0 & 1 & \frac{7}{6} & \frac{5}{2} \\ 0 & 0 & 0 & 1 & 3 \\ \end{matrix} \right]$ Since the desired matrix is in row echelon form, so, express the system of linear equations corresponding to the echelon form of matrix as follows: $w+x+y+z=5$ (I) $x-2y-3z=-6$ (II) $y+\frac{7}{6}z=\frac{5}{2}$ (III) $z=3$ (IV) Apply the back-substitution method: Equation (IV) gives, $z=3$. Substitute the value of z in the equation (III) as follows: $\begin{align} & y+\frac{7}{6}\left( 3 \right)=\frac{5}{2} \\ & y=\frac{5}{2}-\frac{7}{2} \\ & y=-1 \end{align}$ Substitute the values of y and z in the equation (II)as follows: $\begin{align} & x-2\left( -1 \right)-3\left( 3 \right)=-6 \\ & x=1 \end{align}$ Substitute the values of x, y, and z in the equation (I)as follows: $\begin{align} & w+\left( 1 \right)+\left( -1 \right)+\left( 3 \right)=5 \\ & w=2 \end{align}$ Therefore, the values of w, x, y, z are $w=2,x=1,y=-1,z=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.