Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Cumulative Review Exercises - Page 880: 20

Answer

The solutions of the equation are $\left( -\frac{1}{2},\frac{1}{2} \right),\left( 2,8 \right)$

Work Step by Step

Let us consider the system of equations as $\begin{align} & 3x-y=-2 \\ & 2{{x}^{2}}-y=0 \end{align}$. Also, consider the equation $2{{x}^{2}}-y=0$: $\begin{align} & 2{{x}^{2}}-y=0 \\ & y=2{{x}^{2}} \end{align}$ Now, put $ y=2{{x}^{2}}$ in $3x-y=-2$ and compute the values as given below: $\begin{align} & 3x-y=-2 \\ & 3x-2{{x}^{2}}=-2 \\ & 2{{x}^{2}}-3x-2=0 \\ & \left( 2x+1 \right)\left( x-2 \right)=0 \end{align}$ Solve further the equation: $\begin{align} & \left( 2x+1 \right)\left( x-2 \right)=0 \\ & x=-\frac{1}{2},2 \end{align}$ Substitute the value $ x=-\frac{1}{2}$ in the equation $ y=2{{x}^{2}}$, to obtain the value of y: $\begin{align} & y=2{{x}^{2}} \\ & y=2\times {{\left( -\frac{1}{2} \right)}^{2}} \\ & y=\frac{1}{2} \\ \end{align}$ Substitute the value $ x=2$ in the equation $ y=2{{x}^{2}}$, to obtain the value of y : $\begin{align} & y=2{{x}^{2}} \\ & y=2\times {{2}^{2}} \\ & y=8 \\ \end{align}$ Thus, the solution of equations are $\left( -\frac{1}{2},\frac{1}{2} \right),\left( 2,8 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.