Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 799: 75

Answer

$128+128i$

Work Step by Step

For converting the complex number in rectangular form $z=a+ib$, the polar form of the complex number is given by $z=r\left( \cos \theta +i\sin \theta \right)$ Where $\begin{align} & r=\sqrt{{{a}^{2}}+{{b}^{2}}} \\ & \theta ={{\tan }^{-1}}\left( \frac{b}{a} \right) \end{align}$ DeMoivre’s Theorem: For any complex number $z=r\left( \cos \theta +i\sin \theta \right)$, if n is a positive integer $\left( z>0 \right)$ then, $\begin{align} & {{z}^{n}}={{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}} \\ & ={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right) \end{align}$ So, at first we will convert $\left( -2-2i \right)$ in the polar form. Here, $\begin{align} & r=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -2 \right)}^{2}}} \\ & =2\sqrt{2} \end{align}$ Since, $\left( -2-2i \right)$ lies in ${{3}^{\text{rd}}}$ quadrant, we have $\begin{align} & \theta ={{\tan }^{-1}}\left( \frac{-2}{-2} \right) \\ & \theta ={{\tan }^{-1}}\left( 1 \right) \\ & \theta =\pi +\frac{\pi }{4} \\ & =\frac{5\pi }{4} \end{align}$ So, $\left( -2-2i \right)=2\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right)$. Therefore, ${{\left( \left( -2-2i \right) \right)}^{5}}={{\left[ 2\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right) \right]}^{5}}$. So, $\begin{align} & {{\left[ 2\sqrt{2}\left( \cos \frac{5\pi }{4}+i\sin \frac{5\pi }{4} \right) \right]}^{5}}={{\left( 2\sqrt{2} \right)}^{5}}\left[ \cos 5\left( \frac{5\pi }{4} \right)+i\sin 5\left( \frac{5\pi }{4} \right) \right] \\ & =128\sqrt{2}\left( \cos \frac{25\pi }{4}+i\sin \frac{25\pi }{4} \right) \\ & =128\sqrt{2}\left\{ \cos \left( 6\pi +\frac{\pi }{4} \right)+i\sin \left( 6\pi +\frac{\pi }{4} \right) \right\} \\ & =128\sqrt{2}\left( \frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}} \right) \end{align}$ That is, $128+128i$. Hence, ${{\left( -2-2i \right)}^{5}}=128+128i$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.