Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.6 - Vectors - Exercise Set - Page 785: 121

Answer

a) ${{\left\| \mathbf{u} \right\|}^{2}}={{\left\| \mathbf{v} \right\|}^{2}}+{{\left\| \mathbf{w} \right\|}^{2}}-2\left\| \mathbf{u} \right\|\left\| \mathbf{v} \right\|\cos \theta $ b) $\left\| \mathbf{u} \right\|=\sqrt{{{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}}$, ${{\left\| \mathbf{u} \right\|}^{2}}={{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}$, $\left\| \mathbf{v} \right\|=\sqrt{a_{1}^{2}+b_{1}^{2}}$, ${{\left\| \mathbf{v} \right\|}^{2}}=a_{1}^{2}+b_{1}^{2}$, $\left\| \mathbf{w} \right\|=\sqrt{a_{2}^{2}+b_{2}^{2}}$, and ${{\left\| \mathbf{w} \right\|}^{2}}=a_{2}^{2}+b_{2}^{2}$.

Work Step by Step

(a) According to the cosine law of triangles ${{\left\| \mathbf{A} \right\|}^{2}}={{\left\| \mathbf{B} \right\|}^{2}}+{{\left\| \mathbf{C} \right\|}^{2}}-2\left\| \mathbf{B} \right\|\left\| \mathbf{C} \right\|\cos \theta $ Here, $\theta $ is the angle between the vectors $\mathbf{B}$ and $\mathbf{C}$. From the given figure, the angle between the vectors $\mathbf{u}$ and $\mathbf{w}$ is $\theta $. Now, apply the cosine law for vector $\mathbf{u}$ to get ${{\left\| \mathbf{u} \right\|}^{2}}={{\left\| \mathbf{v} \right\|}^{2}}+{{\left\| \mathbf{w} \right\|}^{2}}-2\left\| \mathbf{u} \right\|\left\| \mathbf{v} \right\|\cos \theta $ (b) The vector $\mathbf{u}$ is $\mathbf{u}=\left( {{a}_{1}}-{{a}_{2}} \right)\mathbf{i}+\left( {{b}_{1}}-{{b}_{2}} \right)\mathbf{j}$ The magnitude of the vector $\mathbf{u}$ is $\left\| \mathbf{u} \right\|=\sqrt{{{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}}$ Squaring on both sides, we get ${{\left\| \mathbf{u} \right\|}^{2}}={{\left( {{a}_{1}}-{{a}_{2}} \right)}^{2}}+{{\left( {{b}_{1}}-{{b}_{2}} \right)}^{2}}$ The vector $\mathbf{w}$ is $\begin{align} & \mathbf{w}=\left( {{a}_{2}}-0 \right)\mathbf{i}+\left( {{b}_{2}}-0 \right)\mathbf{j} \\ & ={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j} \end{align}$ The magnitude of the vector $\mathbf{w}$ is $\left\| \mathbf{w} \right\|=\sqrt{a_{2}^{2}+b_{2}^{2}}$ Squaring on both sides, we get ${{\left\| \mathbf{w} \right\|}^{2}}=a_{2}^{2}+b_{2}^{2}$ The vector $\mathbf{w}$ is $\begin{align} & \mathbf{v}=\left( {{a}_{1}}-0 \right)\mathbf{i}+\left( {{b}_{1}}-0 \right)\mathbf{j} \\ & ={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j} \end{align}$ The magnitude of the vector $\mathbf{v}$ is $\left\| \mathbf{v} \right\|=\sqrt{a_{1}^{2}+b_{1}^{2}}$ Squaring on both sides, we get ${{\left\| \mathbf{v} \right\|}^{2}}=a_{1}^{2}+b_{1}^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.