Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.6 - Vectors - Exercise Set - Page 784: 112

Answer

See the explanation below.

Work Step by Step

The vector is, $\mathbf{v}=a\mathbf{i}+b\mathbf{j}$. The magnitude of the vector $\mathbf{v}$ is given by: $\left\| \mathbf{v} \right\|=\sqrt{{{a}^{2}}+{{b}^{2}}}$ The unit vector $\frac{\mathbf{v}}{\left\| \mathbf{v} \right\|}$ is given by: $\begin{align} & \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|}=\frac{a\mathbf{i}+b\mathbf{j}}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \\ & =\frac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{i}+\frac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{j} \end{align}$ The dot product of unit vector $\left( \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|} \right)$ with $\mathbf{v}$ is, $\begin{align} & \mathbf{v}\cdot \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|}=\left( a\mathbf{i}+b\mathbf{j} \right)\cdot \left( \frac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{i}+\frac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{j} \right) \\ & =\frac{{{a}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{i}\cdot \mathbf{i}+\frac{{{b}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\mathbf{j}\cdot \mathbf{j} \\ & =\frac{{{a}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}}}+\frac{{{b}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \\ & =\frac{{{a}^{2}}+{{b}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \end{align}$ Thus, the dot product of unit vector $\left( \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|} \right)$ with $\mathbf{v}$ is, $\mathbf{v}\cdot \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|}=\sqrt{{{a}^{2}}+{{b}^{2}}}$ The dot product of unit vector $\left( \frac{\mathbf{v}}{\left\| \mathbf{v} \right\|} \right)$ with $\mathbf{v}$ gives the magnitude of the vector $\mathbf{v}$. That means the $\frac{\mathbf{v}}{\left\| \mathbf{v} \right\|}$ is the unit vector in the direction of $\mathbf{v}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.