Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.6 - Vectors - Exercise Set - Page 783: 82

Answer

a) The resultant force is $-5.62\mathbf{i}+10.01\mathbf{j}$. b) The equilibrium force is $5.62\mathbf{i}-10.01\mathbf{j}.$

Work Step by Step

(a) The force $\mathbf{F}$ in vector form is given as $\mathbf{F}=\left\| \left. \mathbf{F} \right\| \right.\cos \theta \mathbf{i}+\left\| \left. \mathbf{F} \right\| \right.\sin \theta \mathbf{j}$ Substitute the value $\theta =70{}^\circ $ and $\left\| \left. {{\mathbf{F}}_{1}} \right\| \right.=8$. The force ${{\mathbf{F}}_{\mathbf{1}}}$ is given as: $\begin{align} & {{\mathbf{F}}_{1}}=\left\| \left. {{\mathbf{F}}_{1}} \right\| \right.\cos 70{}^\circ \mathbf{i}+\left\| \left. {{\mathbf{F}}_{1}} \right\| \right.\sin 70{}^\circ \mathbf{j} \\ & =8\cos 70{}^\circ \mathbf{i}+8\sin 70{}^\circ \mathbf{j} \\ & =2.74\mathbf{i}+7.52\mathbf{j} \end{align}$ Substitute the value $\theta =140{}^\circ $ and $\left\| \left. {{\mathbf{F}}_{2}} \right\| \right.=6$. The force ${{\mathbf{F}}_{2}}$ is given as $\begin{align} & {{\mathbf{F}}_{2}}=\left\| \left. {{\mathbf{F}}_{2}} \right\| \right.\cos 140{}^\circ \mathbf{i}+\left\| \left. {{\mathbf{F}}_{2}} \right\| \right.\sin 140{}^\circ \mathbf{j} \\ & =6\cos 140{}^\circ \mathbf{i}+6\sin 140{}^\circ \mathbf{j} \\ & =-4.60\mathbf{i}+3.86\mathbf{j} \end{align}$ Substitute the value $\theta =200{}^\circ $ and $\left\| \left. {{\mathbf{F}}_{3}} \right\| \right.=4$. The force ${{\mathbf{F}}_{3}}$ is given as $\begin{align} & {{\mathbf{F}}_{3}}=\left\| \left. {{\mathbf{F}}_{3}} \right\| \right.\cos 200{}^\circ \mathbf{i}+\left\| \left. {{\mathbf{F}}_{3}} \right\| \right.\sin 200{}^\circ \mathbf{j} \\ & =4\cos 200{}^\circ \mathbf{i}+4\sin 200{}^\circ \mathbf{j} \\ & =-3.76\mathbf{i}-1.37\mathbf{j} \end{align}$ The resultant force is given by $\mathbf{F}$. $\begin{align} & \mathbf{F}={{\mathbf{F}}_{1}}+{{\mathbf{F}}_{2}}+{{\mathbf{F}}_{3}} \\ & {{\mathbf{F}}_{1}}+{{\mathbf{F}}_{2}}+{{\mathbf{F}}_{3}}=\left( 2.74-4.60-3.76 \right)\mathbf{i}+\left( 7.52+3.86-1.37 \right)\mathbf{j} \\ & =-5.62\mathbf{i}+10.01\mathbf{j} \end{align}$ (b) The equilibrium force is when net force is 0. Let the equilibrium force be given by $\mathbf{G}$. Then, $\begin{align} & \mathbf{F}+\mathbf{G}\text{=0} \\ & \mathbf{G}=\mathbf{-F} \\ \end{align}$ Substitute the value of $\mathbf{F}=-5.62\mathbf{i}+10.01\mathbf{j}$ in the above equation to get $\begin{align} & \mathbf{G}=-\left( -5.62\mathbf{i}+10.01\mathbf{j} \right) \\ & =5.62\mathbf{i}-10.01\mathbf{j} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.