Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.6 - Vectors - Exercise Set - Page 783: 81

Answer

a) The resultant force is $-2\mathbf{j}$. b) The equilibrium force is $2\mathbf{j}$. The force is at equilibrium when the net force is 0.

Work Step by Step

(a) If the force ${{\mathbf{F}}_{\mathbf{1}}}$ in the rectangular component is $\left( -3,0 \right)$. Then force in vector form is ${{\mathbf{F}}_{\mathbf{1}}}=-3\mathbf{i}$. If the force ${{\mathbf{F}}_{2}}$ in the rectangular component is $\left( -1,4 \right)$. Then force in vector form is ${{\mathbf{F}}_{2}}=-\mathbf{i}\text{+4}\mathbf{j}$. If the force ${{\mathbf{F}}_{3}}$ in the rectangular component is $\left( 4,-2 \right)$. Then force in vector form is ${{\mathbf{F}}_{3}}=4\mathbf{i}-2\mathbf{j}$. If the force ${{\mathbf{F}}_{4}}$ in the rectangular component is $\left( 0,-4 \right)$. Then force in vector form is ${{\mathbf{F}}_{4}}=-4\mathbf{j}$. The resultant force is given by $\mathbf{F}$: $\begin{align} & \mathbf{F}={{\mathbf{F}}_{1}}+{{\mathbf{F}}_{2}}+{{\mathbf{F}}_{3}}+{{\mathbf{F}}_{4}} \\ & {{\mathbf{F}}_{1}}+{{\mathbf{F}}_{2}}+{{\mathbf{F}}_{3}}+{{\mathbf{F}}_{4}}=-3\mathbf{i}+\left( -\mathbf{i}\text{+4}\mathbf{j} \right)+\left( 4\mathbf{i}-2\mathbf{j} \right)+\left( -4\mathbf{j} \right) \\ & =-3\mathbf{i}-\mathbf{i}+4\mathbf{i}+\text{4}\mathbf{j}-2\mathbf{j}-4\mathbf{j} \\ & =-2\mathbf{j} \end{align}$ (b) Let the equilibrium force be given by $\mathbf{G}$. Then, $\begin{align} & \mathbf{F}+\mathbf{G}\text{=0} \\ & \mathbf{G}=\mathbf{-F} \\ \end{align}$ Put the value of $\mathbf{F}=-2\mathbf{j}$ in above equation: $\begin{align} & \mathbf{G}=-\left( -2\mathbf{j} \right) \\ & =2\mathbf{j} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.