Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.4 - Graphs of Polar Equations - Exercise Set - Page 755: 96

Answer

See the proof below.

Work Step by Step

Consider the left side of the equation $\frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}$. At first, take the least common multiple of the denominator, $\begin{align} & =\frac{\left( 1+\sin x \right)\left( 1+\sin x \right)-\left( 1-\sin x \right)\left( 1-\sin x \right)}{\left( 1-\sin x \right)\times \left( 1+\sin x \right)} \\ & =\frac{\left( 1+{{\sin }^{2}}x+2\sin x \right)-\left( 1+{{\sin }^{2}}x-2\sin x \right)}{\left( 1-{{\sin }^{2}}x \right)} \\ \end{align}$ Then reduce the above equation in simplified form $\begin{align} & =4\frac{\sin x}{{{\cos }^{2}}x} \\ & =4\frac{\sin x}{\cos x\times \cos x} \\ \end{align}$ Also, $\frac{\sin x}{\cos x}=\tan x\,\text{ and }\,\frac{1}{\cos x}=\sec x $ The simplified form of equation is: $\begin{align} & =4\frac{\sin x}{\cos x}\times \frac{1}{\cos x} \\ & =4\tan x\sec x \\ \end{align}$ Hence, the identity is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.