Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.2 - The Law of Cosines - Exercise Set - Page 732: 69

Answer

The solution in the interval $\left[ 0,2\pi \right]$ is $\frac{3\pi }{2}$

Work Step by Step

$\begin{align} & {{\cos }^{2}}x+\sin x+1=0 \\ & 1-{{\sin }^{2}}x+\sin x+1=0 \\ & -{{\sin }^{2}}x+\sin x+2=0 \\ & {{\sin }^{2}}x-\sin x-2=0 \end{align}$ Now, $\begin{align} & {{\left( \sin x \right)}^{2}}-\sin x-2=0 \\ & {{\left( \sin x \right)}^{2}}-2\sin x+\sin x-2=0 \\ & \sin x\left( \sin x-2 \right)+1\left( \sin x-2 \right)=0 \\ & \left( \sin x+1 \right)\left( \sin x-2 \right)=0 \end{align}$ From here, $\sin x=-1$ or $\sin x=2$ $\sin x=2$ is not possible as the range of the sin function is from $\left[ -1,1 \right]$ Therefore, $\begin{align} & \sin x=-1 \\ & x=\frac{3\pi }{2} \\ \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.