Answer
$A=44^\circ,B=C=68^\circ$
Work Step by Step
Step 1. Based on the given conditions, using the Law of Cosines, we have
$a^2=b^2+c^2-2bc\ cosA$, we have $(6)^2=(8)^2+(8)^2-2(8)(8)cosA$, thus $cosA\approx0.7188$ and $A=cos^{-1}(0.7188)\approx44^\circ$
Step 2. As $b=c$, the triangle is isosceles; thus $B=C=\frac{180-44}{2}=68^\circ$
Step 3. We solved the triangle with
$A=44^\circ,B=C=68^\circ$