Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 723: 76

Answer

The buildings are about $257\text{ feet}$ high.

Work Step by Step

Consider that the two buildings of equal height are 800 feet apart and an observer on the street between the buildings measures the angles of elevation to the tops of buildings as $27{}^\circ $ and $41{}^\circ $. Let h be the height of the buildings. By observation, we get $\begin{align} & b+e=800 \\ & e=800-b \end{align}$ Using the law of sines, we get $\frac{b}{\sin 63{}^\circ }=\frac{h}{\sin 27{}^\circ }$ (1) $\frac{800-b}{\sin 49{}^\circ }=\frac{h}{\sin 41{}^\circ }$ (2) Now, we will solve equation (1) for b: $b=\frac{h\sin 63{}^\circ }{\sin 27{}^\circ }$ Substituting the value of b in equation (2): $\begin{align} & \frac{800-\left( \frac{h\sin 63{}^\circ }{\sin 27{}^\circ } \right)}{\sin 49{}^\circ }=\frac{h}{\sin 41{}^\circ } \\ & \frac{800\sin 27{}^\circ -h\sin 63{}^\circ }{\sin 27{}^\circ \sin 49{}^\circ }=\frac{h}{\sin 41{}^\circ } \\ & h\left( \sin 27{}^\circ \sin 49{}^\circ \right)=\sin 41{}^\circ \left( 800\sin 27{}^\circ -h\sin 63{}^\circ \right) \\ & h\sin 27{}^\circ \sin 49{}^\circ =800\sin 27{}^\circ \sin 41{}^\circ -h\sin 63{}^\circ \sin 41{}^\circ \end{align}$ Now, we will solve it further to find h: $\begin{align} & h\sin 27{}^\circ \sin 49{}^\circ +h\sin 63{}^\circ \sin 41{}^\circ =800\sin 27{}^\circ \sin 41{}^\circ \\ & h\left( \sin 27{}^\circ \sin 49{}^\circ +\sin 63{}^\circ \sin 41{}^\circ \right)=800\sin 27{}^\circ \sin 41{}^\circ \\ & h=\frac{800\sin 27{}^\circ \sin 41{}^\circ }{\sin 27{}^\circ \sin 49{}^\circ +\sin 63{}^\circ \sin 41{}^\circ } \\ & h\approx 257 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.