Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.1 - The Law of Sines - Exercise Set - Page 721: 49

Answer

The platform is about $3671.8\text{ yards}$ from one end of the beach and $\text{3576}\text{.4 yards}$ from the other end.

Work Step by Step

Using the figure, we will find C: $\begin{align} & C=180{}^\circ -A-B \\ & =180{}^\circ -85{}^\circ -76{}^\circ \\ & =19{}^\circ \end{align}$ Now, the ratio $\frac{c}{\sin C}$, or $\frac{1200}{\sin 19{}^\circ }$, is known. Using the law of sines we will find a and b: $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{a}{\sin 85{}^\circ }=\frac{1200}{\sin 19{}^\circ } \\ & a=\frac{1200\sin 85{}^\circ }{\sin 19{}^\circ } \\ & a\approx 3671.8 \end{align}$ Now, we will evaluate b using the law of sines as below: $\begin{align} & \frac{b}{\sin B}=\frac{c}{\sin C} \\ & \frac{b}{\sin 76{}^\circ }=\frac{1200}{\sin 19{}^\circ } \\ & b=\frac{1200\sin 76{}^\circ }{\sin 19{}^\circ } \\ & b\approx 3576.4 \end{align}$ The platform is about $3671.8\text{ yards}$ from one end of the beach and $\text{3576}\text{.4 yards}$ from the other end.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.