Answer
They are not orthogonal vectors.
Work Step by Step
Dot proct of vectors:
For two vectors $\mathbf{v}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}$ and $\mathbf{w}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$
$\mathbf{v}\cdot \mathbf{w}={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}$.
If the dot product of two nonzero vectors is zero then the vectors are said to be orthogonal vectors.
Here, ${{a}_{1}}=1,{{a}_{2}}=-3,{{b}_{1}}=3,{{b}_{2}}=-1$.
So,
$\begin{align}
& \mathbf{v}\cdot \mathbf{w}={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \\
& =1\left( -3 \right)+\left( 3 \right)\left( -1 \right) \\
& =-6-6 \\
& =-12
\end{align}$
Since, the dot product is not zero so the vectors are not orthogonal vectors.