Answer
They are orthogonal vectors.
Work Step by Step
Dot proct of vectors:
For two vectors $\mathbf{v}={{a}_{1}}\mathbf{i}+{{b}_{1}}\mathbf{j}$ and $\mathbf{w}={{a}_{2}}\mathbf{i}+{{b}_{2}}\mathbf{j}$
$\mathbf{v}\cdot \mathbf{w}={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}$.
If the dot product of two nonzero vectors is zero then the vectors are said to be orthogonal vectors.
Here, ${{a}_{1}}=12,{{a}_{2}}=2,{{b}_{1}}=-8,{{b}_{2}}=3$.
So,
$\begin{align}
& \mathbf{v}\cdot \mathbf{w}={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \\
& =12\left( 2 \right)+\left( -8 \right)\left( 3 \right) \\
& =24-24 \\
& =0
\end{align}$
Since, the dot product is zero so the vectors are orthogonal vectors.