Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Test - Page 709: 4

Answer

$\frac{3\sqrt {13}}{13}$

Work Step by Step

Step 1. Given $sin\alpha=\frac{4}{5}, \frac{\pi}{2}\lt\alpha\lt\pi$, we can identify $\alpha$ to be in quadrant II, which means $cos\alpha=-\sqrt {1-sin^2\alpha}=-\frac{3}{5}$ and $tan\alpha=-\frac{4}{3}$ Step 2. Given $cos\beta=\frac{5}{13}, 0\lt\beta\lt \frac{\pi}{2}$, we can identify $\beta$ to be in quadrant I, which means $sin\beta=\sqrt {1-cos^2\beta}=\frac{12}{13}$ and $tan\beta=\frac{12}{5}$ Step 3. As $0\lt\frac{\beta}{2}\lt \frac{\pi}{4}$, using the half angle formula, we have $cos\frac{\beta}{2}=\sqrt {\frac{1+cos\beta}{2}}=\sqrt {\frac{1+(\frac{5}{13})}{2}}=\frac{3\sqrt {13}}{13}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.