Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 683: 117

Answer

The required solution is True.

Work Step by Step

Let us consider the left side of the given expression: $\cos \frac{\pi }{2}\cos \frac{\pi }{3}$ Now, put the values of the trigonometric functions to find the exact value as shown below: $\begin{align} & \cos \frac{\pi }{2}\cos \frac{\pi }{3}=0\cdot \frac{1}{2} \\ & =0 \end{align}$ Also, consider the right side of the given expression: $\frac{1}{2}\left[ \cos \left( \frac{\pi }{2}-\frac{\pi }{3} \right)+\cos \left( \frac{\pi }{2}+\frac{\pi }{3} \right) \right]$ Then, put the values of the trigonometric functions to find the exact value as shown below: $\begin{align} & \frac{1}{2}\left[ \cos \left( \frac{\pi }{2}-\frac{\pi }{3} \right)+\cos \left( \frac{\pi }{2}+\frac{\pi }{3} \right) \right]=\frac{1}{2}\left[ \cos \left( \frac{3\pi -2\pi }{6} \right)+\cos \left( \frac{3\pi +2\pi }{6} \right) \right] \\ & =\frac{1}{2}\left[ \cos \left( \frac{\pi }{6} \right)+\cos \left( \frac{5\pi }{6} \right) \right] \\ & =\frac{1}{2}\cdot \left[ \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \right] \\ & =0 \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\cos \frac{\pi }{2}\cos \frac{\pi }{3}=\frac{1}{2}\left[ \cos \left( \frac{\pi }{2}-\frac{\pi }{3} \right)-\cos \left( \frac{\pi }{2}+\frac{\pi }{3} \right) \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.