Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Exercise Set - Page 683: 116

Answer

The required solution is True.

Work Step by Step

Let us consider the left side of the given expression: $\sin {{60}^{\circ }}\sin {{30}^{\circ }}$ Now, put the values of the trigonometric functions to find the exact value as given below: $\begin{align} & \sin {{60}^{\circ }}\sin {{30}^{\circ }}=\frac{\sqrt{3}}{2}\cdot \frac{1}{2} \\ & =\frac{\sqrt{3}}{4} \end{align}$ Also, consider the right side of the given expression: $\frac{1}{2}\left[ \cos \left( {{60}^{\circ }}-{{30}^{\circ }} \right)-\cos \left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right]$ Then, put the values of the trigonometric functions to find the exact value as shown below: $\begin{align} & \frac{1}{2}\left[ \cos \left( {{60}^{\circ }}-{{30}^{\circ }} \right)-\cos \left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right]=\frac{1}{2}\left[ \cos {{30}^{\circ }}-\cos {{90}^{\circ }} \right] \\ & =\frac{1}{2}\left[ \frac{\sqrt{3}}{2}-0 \right] \\ & =\frac{1}{2}\cdot \frac{\sqrt{3}}{2} \\ & =\frac{\sqrt{3}}{4} \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\frac{1}{2}\left[ \cos \left( {{60}^{\circ }}-{{30}^{\circ }} \right)-\cos \left( {{60}^{\circ }}+{{30}^{\circ }} \right) \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.