Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Concept and Vocabulary Check - Page 679: 9

Answer

The required value of the $\tan \frac{\alpha }{2}$ is $\pm \sqrt{\frac{1-\cos \,\alpha }{1+\cos \,\alpha }}=\frac{1-\cos \alpha }{\sin \alpha }=\frac{\sin \alpha }{1+\cos \alpha }$.

Work Step by Step

We have to find the value of $\tan \frac{\alpha }{2}$; the half angle formula is used as follows: $\begin{align} & {{\tan }^{2}}\frac{\alpha }{2}=\frac{{{\sin }^{2}}\frac{\alpha }{2}}{{{\cos }^{2}}\frac{\alpha }{2}} \\ & =\frac{\frac{1-\cos 2\frac{\alpha }{2}}{2}}{\frac{1+\cos 2\frac{\alpha }{2}}{2}} \\ & =\frac{1-\cos \alpha }{2}\times \frac{2}{1+\cos \alpha } \\ & =\pm \sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }} \end{align}$ Then, verify the $\tan \frac{\alpha }{2}$ for the other formula with the half angle formula: $\tan \alpha =\frac{1-\cos 2\alpha }{\sin 2\alpha }$ Replace $\alpha $ with $\frac{\alpha }{2}$ $\begin{align} & \tan \frac{\alpha }{2}=\frac{1-\cos 2\frac{\alpha }{2}}{\sin 2\frac{\alpha }{2}} \\ & =\frac{1-\cos \alpha }{\sin \alpha } \end{align}$ Verify the $\tan \frac{\alpha }{2}$ for the other formula with the half angle formula: $\tan \alpha =\frac{\sin 2\alpha }{1+\cos 2\alpha }$ Replace $\alpha $ with $\frac{\alpha }{2}$ $\begin{align} & \tan \frac{\alpha }{2}=\frac{\sin 2\frac{\alpha }{2}}{1+\cos 2\frac{\alpha }{2}} \\ & =\frac{\sin \alpha }{1+\cos \alpha } \end{align}$ Hence, the value of the $\tan \frac{\alpha }{2}$ is $\pm \sqrt{\frac{1-\cos \,\alpha }{1+\cos \,\alpha }}=\frac{1-\cos \alpha }{\sin \alpha }=\frac{\sin \alpha }{1+\cos \alpha }$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.