Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.3 - Double-Angle, Power-Reducing, and Half-Angle Formulas - Concept and Vocabulary Check - Page 679: 2

Answer

The required value of cos2A is $Co{{s}^{2}}A-{{\sin }^{2}}A,\,2Co{{s}^{2}}A-1$ and $1-2{{\sin }^{2}}A$.

Work Step by Step

In order to find the value of cos 2A, the double angle formula is used that is as shown below: $\cos \left( \alpha +\beta \right)=\cos \alpha \cos \beta -\sin \alpha \sin \beta $ Now, consider $\alpha $ and $\beta $ as x in cos (A+A), then the formula becomes: $\begin{align} & \cos \,2A=\cos \left( A+A \right) \\ & =\cos \,A\,\cos \,A-\sin \,A\,\sin \,A \\ & ={{\cos }^{2}}A-{{\sin }^{2}}A \end{align}$ With the help of the aforementioned formula, the proving can be done as given below: $\begin{align} & \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A \\ & ={{\cos }^{2}}A-\left( 1-{{\cos }^{2}}A \right) \\ & ={{\cos }^{2}}A-1+{{\cos }^{2}}A \\ & =2{{\cos }^{2}}A-1 \end{align}$ The third formula for cos 2A is as shown below: $\begin{align} & \cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A \\ & =1-{{\sin }^{2}}A-{{\sin }^{2}}A \\ & =1-2{{\sin }^{2}}A \end{align}$ Hence, the required value of cos2A is $Co{{s}^{2}}A-{{\sin }^{2}}A,\,2Co{{s}^{2}}A-1$ and $1-2{{\sin }^{2}}A$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.