Answer
The right side is equal to $\sin \frac{x}{2}$.
Work Step by Step
By using the identity $\sin \left( \alpha -\beta \right)=\sin \alpha \cos \beta -\cos \alpha \sin \beta $ , the above expression can be simplified as:
$\begin{align}
& \sin \ \frac{5x}{2}\ \cos \ 2x-\ \cos \ \frac{5x}{2}\ \sin \ 2x=\sin \left( \frac{5x}{2}-2x \right) \\
& =\sin \left( \frac{5x-4x}{2} \right) \\
& =\sin \frac{x}{2}
\end{align}$
Thus, the right side of the equation is equal to $\sin \frac{x}{2}$.
Thus, it is proved that left side is equal to the right side.